A Class of Adaptive Importance Sampling Weighted EM Algorithms for Efficient and Robust Posterior and Predictive Simulation
نویسندگان
چکیده
A class of adaptive sampling methods is introduced for efficient posterior and predictive simulation. The proposed methods are robust in the sense that they can handle target distributions that exhibit non-elliptical shapes such as multimodality and skewness. The basic method makes use of sequences of importance weighted Expectation Maximization steps in order to efficiently construct a mixture of Student-t densities that approximates accurately the target distribution – typically a posterior distribution, of which we only require a kernel – in the sense that the Kullback-Leibler divergence between target and mixture is minimized. We label this approach Mixture of t by Importance Sampling and Expectation Maximization (MitISEM). The constructed mixture is used as a candidate density for quick and reliable application of either Importance Sampling (IS) or the Metropolis-Hastings (MH) method. We also introduce three extensions of the basic MitISEM approach. First, we propose a method for applying MitISEM in a sequential manner, so that the candidate distribution for posterior simulation is cleverly updated when new data become available. Our results show that the computational effort reduces enormously, while the quality of the approximation remains almost unchanged. This sequential approach can be combined with a tempering approach, which facilitates the simulation from densities with multiple modes that are far apart. Second, we introduce a permutation-augmented MitISEM approach. This is useful for importance or Metropolis-Hastings sampling from posterior distributions in mixture models without the requirement of imposing identification restrictions on the model’s mixture regimes’ parameters. Third, we propose a partial MitISEM approach, which aims at approximating the joint distribution by estimating a product of marginal and conditional distributions. This division can substantially reduce the dimension of the approximation problem, which facilitates the application of adaptive importance sampling for posterior simulation in more complex models with larger numbers of parameters. Our results indicate that the proposed methods can substantially reduce the computational burden in econometric models like DCC or mixture GARCH models and a mixture instrumental variables model.
منابع مشابه
A Class of Adaptive EM-based Importance Sampling Algorithms for Efficient and Robust Posterior and Predictive Simulation
A class of adaptive sampling methods is introduced for efficient posterior and predictive simulation. The proposed methods are robust in the sense that they can handle target distributions that exhibit non-elliptical shapes such as multimodality and skewness. The basic method makes use of sequences of importance weighted Expectation Maximization steps in order to efficiently construct a mixture...
متن کاملRobust Model Predictive Control for a Class of Discrete Nonlinear systems
This paper presents a robust model predictive control scheme for a class of discrete-time nonlinear systems subject to state and input constraints. Each subsystem is composed of a nominal LTI part and an additive uncertain non-linear time-varying function which satisfies a quadratic constraint. Using the dual-mode MPC stability theory, a sufficient condition is constructed for synthesizing the ...
متن کاملAdaptive Predictive Controllers Using a Growing and Pruning RBF Neural Network
An adaptive version of growing and pruning RBF neural network has been used to predict the system output and implement Linear Model-Based Predictive Controller (LMPC) and Non-linear Model-based Predictive Controller (NMPC) strategies. A radial-basis neural network with growing and pruning capabilities is introduced to carry out on-line model identification.An Unscented Kal...
متن کاملADAPTIVE ORDERED WEIGHTED AVERAGING FOR ANOMALY DETECTION IN CLUSTER-BASED MOBILE AD HOC NETWORKS
In this paper, an anomaly detection method in cluster-based mobile ad hoc networks with ad hoc on demand distance vector (AODV) routing protocol is proposed. In the method, the required features for describing the normal behavior of AODV are defined via step by step analysis of AODV and independent of any attack. In order to learn the normal behavior of AODV, a fuzzy averaging method is used fo...
متن کاملSearch Based Weighted Multi-Bit Flipping Algorithm for High-Performance Low-Complexity Decoding of LDPC Codes
In this paper, two new hybrid algorithms are proposed for decoding Low Density Parity Check (LDPC) codes. Original version of the proposed algorithms named Search Based Weighted Multi Bit Flipping (SWMBF). The main idea of these algorithms is flipping variable multi bits in each iteration, change in which leads to the syndrome vector with least hamming weight. To achieve this, the proposed algo...
متن کامل